
MYR: A Web-Based Platform for Teaching Coding Using VR

Christopher Berns∗
University of Massachusetts Lowell

Lowell, Massachusetts
christopher_berns@student.uml.edu

Grace Chin†
University of Massachusetts Lowell

Lowell, Massachusetts
grace_chin@student.uml.edu

Joel Savitz‡
University of Massachusetts Lowell

Lowell, Massachusetts
joel_savitz@student.uml.edu

Jason Kiesling§
University of Massachusetts Lowell

Lowell, Massachusetts
jason_kiesling@student.uml.edu

Fred Martin¶
University of Massachusetts Lowell

Lowell, Massachusetts
fred_martin@uml.edu

ABSTRACT
MYR is a browser-based, educational platform built to spark stu-
dent interest in computer science by allowing users to write code
that generates three-dimensional, animated scenes in virtual re-
ality. The interface consists of two primary components: (1) an
integrated editor, which leverages the MYR API and the A-Frame
entity-component-system, and (2) a real-time renderer that displays
the corresponding scene. The scenes, which vary in complexity,
are viewable using virtual reality headsets, smartphones, and any
device that supports a web browser.

By providing access to the specific domain of virtual reality to
students, the system aims to make computer science concepts tangi-
ble for novice programmers. TheMYR development team conducted
pilot tests with middle school students in order to collect feedback
from this audience. The larger goal of the project is to develop MYR
as a research tool to gain insight into computing students’ success,
motivation, and confidence in learning computing.

The technical implementation, the results of the pilot tests, and
the larger vision for future work are discussed in this paper.

CCS CONCEPTS
• Applied computing→ Interactive learning environments;

KEYWORDS
WebVR, virtual reality, educational tools, research tools, web-based
tools, classroom, software

∗Undergraduate student research assistant at the Engaging Computing Lab.
†Undergraduate student research assistant at the Engaging Computing Lab.
‡Undergraduate student research assistant at the Engaging Computing Lab.
§Undergraduate student research assistant at the Engaging Computing Lab.
¶Professor and director of the Engaging Computing Group.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/2. . . $15.00
https://doi.org/10.1145/3287324.3287482

ACM Reference Format:
Christopher Berns, Grace Chin, Joel Savitz, Jason Kiesling, and Fred Martin.
2019. MYR: AWeb-Based Platform for Teaching Coding Using VR. In SIGCSE
’19: 50th ACM Technical Symposium on Computer Science Education, February
27–March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287482

1 INTRODUCTION
MYR (short for “My Reality”) is a beginner-friendly integrated
development environment (IDE) for creating web-based virtual
reality scenes and experiences. It is built to deliver an engaging
experience that can be used by students, educators, and computer
artists alike.

We anticipate that providing a means for students to create
virtual reality scenes programmatically will foster increased interest
in CS for students from a wide range of backgrounds. We believe
this can be achieved by providing code libraries, curricular materials
developed in collaboration with teachers—such as lessons, activities,
and assessments—and technology for CS education in the context
of VR programming.

Early on we saw potential in A-Frame[1], a popular JavaScript
library for creating virtual reality scenes in the browser, and decided
to extend its capabilities with three clear goals in mind:

(1) to create an engaging environment structured around learn-
ing text-based programming fundamentals,

(2) to make it available to as many people as possible within a
reasonable budget, and

(3) to provide a tool that is capable of aiding research in the field
of CS Ed.

Since the MYR editor supports all JavaScript language features,
it allows students to engage with common CS concepts, including
sequences, loops, functions, events, conditionals, operators, and
data. This provides users a platform to create inspiring, creative
3D scenes while simultaneously learning functional, declarative
programming.

MYR supports a variety of different virtual reality headsets, in-
cluding the higher-end HTC Vive and Oculus Rift and the more
affordable Google Cardboard. This is important to the educational
setting, as it allows institutions to be flexible within their budgets.
It also provides an opportunity for interdisciplinary contexts and
scenarios in CS Ed that lead to inclusion of many different groups
of people in computing.

https://doi.org/10.1145/3287324.3287482
https://doi.org/10.1145/3287324.3287482

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Berns et al.

MYR includes a cloud-based data collection system with which
the scenes that have been rendered are captured and stored. This in-
formation can then be used to analyze qualitative and engagement-
related data, to measure users’ learning progress and retention
rates, and to research users’ problem solving approaches and diffi-
culties. All of this will aid in the development of relevant software
features and inform decisions leading to engaging students from
many backgrounds.

2 BACKGROUND
Research by Mannila et al. (2006) has shown that programming
languages of a lesser syntactic complexity are correlated with fewer
syntax and logic errors and thus lead to higher student success
rates overall. By choosing a simple language, educators can effec-
tively introduce fundamental programming concepts and skills to
potential CS professionals and prepare the foundation that allows
for a smooth transition to more complex languages [11].

There are many tools that try to achieve an appropriate level of
support for empowering novice programmers. In particular, edu-
cational programming languages and environments are engaging
to students when they enable them to build their own interactive
media—that is, mobile applications, games, experiences, and art
[10]. When students use tools such as Logo, Processing, and Scratch
to design and implement interactive media, they exercise compu-
tational thinking, which Cuny, Snyder, and Wing define as “the
thought processes involved in formulating problems and their so-
lutions so that the solutions are represented in a form that can be
effectively carried out by an information-processing agent” [7]. The
recreational aspect enhances the reward level, opening the door
to an exciting world of computer graphics at an early point in a
student’s CS career [12].

We wanted to build upon this prior work by exploring program-
ming in a reinvigorated medium for creating immersive and highly
interactive experiences: web-based virtual reality. Virtual reality
enhances the learning experience by providing a world which stu-
dents can explore—from ideas with which they are familiar to out-
of-world ideas which they cannot experience in real life [9]. Pre-
viously, utilizing virtual reality technology had certain barriers:
accessibility, cost, and technical skill. Now the implementation and
adoption of WebVR has made creating and sharing virtual reality
experiences highly accessible without set-up requirements, since it
can be done through the ubiquitous web browser. Low-cost virtual
reality headset technology has made it possible for more people to
enjoy the immersive experience virtual reality offers.

There are several existing examples of 3D WebVR digital envi-
ronments influencing K-12 students’ digital literacy development
and interdisciplinary lifelong learning [8]. Though these tools are
impactful, there is a shortage of tools that balance ease-of-use
and sophistication while providing an experience that effectively
teaches computational thinking. On one hand, A-Frame by itself
provides an inspector environment that makes it easy to create
complex three-dimensional scenes, but lacks an intuitive platform
to teach CS concepts. On the other hand, an industry-standard game
engine like Unity[5] allows a user to program highly sophisticated
scenes, but the level of competence necessary to use the program
effectively renders it inaccessible to novice programmers. MYR

aims to bridge this divide, balancing ease-of-use with education
efficacy.

3 OVERVIEW OF MYR
In this section, we describe the design of MYR.

3.1 Entity-component-system
MYR uses the entity-component-system (ECS) of A-Frame [1],
a framework developed for creating virtual experiences in the
browser using WebVR [6], WebGL [2], and three.js [4]. A-Frame
components are reusable and modular chunks of data that users can
plug into an entity in order to add appearance, behavior, or func-
tionality. This design pattern has seen recent attention in the field
of game development. As described by Unity, "With ECS, we are
moving from the object-oriented to a data-oriented design, which
means it’s easier to reuse code and easier for others to grasp and
contribute to it" [5]. An ECS does this by favoring composition
over inheritance. This is done by defining every entity simply as
a composition of one or more single purpose components. These
types of systems are easier to understand as they avoid deep in-
heritance hierarchies and provide a clear abstraction at both the
entity and component level. This is a central reason why the MYR
team believes it is likely to be a great experience for the beginner
programmer.

In order to make the ECS viable for MYR, it had to be as fault-
tolerant as possible. This was accomplished by supplying all of the
needed components for a variety of primitive entities with minimal
effort. The function call box() creates an entity with six different
components: a geometry component, a position component, a scale
component, a rotation component, a material component, and an
ID component, as shown in Table 1.

Table 1: Components in entity created by the box() function
call.

ID box1
geometry {primitive: box}
material {color: ’red’}
position {x: 0, y: 0, z: 0}
scale {x: 1, y: 1, z: 1}

rotation {x: 0, y: 0, z: 0}

These details are initially abstracted away from the user, but
each component can be explored individually. MYR helps make
this exploration feel natural and focused on one or two compo-
nents at a time because they only pertain to a single set of details
about the entity. Once users understand how to make a red box, for
example, they have a number of different components to explore
next. One student may choose to explore the material component,
playing with different color combinations and patterns; another
may choose to add animations and work on making an animated
scene. There are countless ways to explore each entity and expand
upon it, another powerful idea behind the decision to build on the
ECS of A-Frame.

MYR: A Web-Based Platform for Teaching Coding Using VR SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

3.2 Cursor
Fundamentally, a cursor is something that preserves state in order
to produce subsequent artifacts. In most cases, this leaves some sort
of mark on the scene. The process of producing more complicated
structures comes from mutations to the cursor rather than the
elements themselves.

The idea of a cursor originally manifested in a physical robot
turtle which was controlled with a simple API using Logo [12,
13]. The physical turtle became an on-screen turtle in later Logo
implementations. This idea of a drawing cursor was later adopted
in the Processing language.

When children thought about how to draw with the Logo turtle,
they would imagine how their own bodies would move. Papert
termed this “body syntonic” thinking, which we can now see as a
form of computational thinking [14].

Following the example of these other educational tools, MYR
adopts the idea of a cursor for drawing and augments it slightly by
using the cursor as a component factory to create the subsequent
entities for the ECS.

In order for the cursor to produce a variety of different compo-
nents, it must have certain properties at all times. By default, MYR
supplies all of the parameters to produce all of the components
needed by each of the primitive entities it supports. At creation of
the entity, the cursor uses its current parameters and creates the
appropriate components. The function call setColor(‘blue‘)will
update the MYR cursor with new parameters. The next entity that
requires a material component will have blue as its color property.

3.3 An Example
Figure 1 shows a simple MYR program and the resulting image it
creates—an ice cream cone. This is done using a global state, or
cursor, which will be discussed further.

The following code creates the ice cream cone by:
(1) setting the cursor’s color to #A05526 or sienna,
(2) setting the cursor’s X, Y and Z position to 0, 1, and -2.5,

respectively,
(3) setting the cursor’s X, Y and Z scale to 0.5, 1, and 0.5 respec-

tively,
(4) setting the cursor’s X -axis rotation to 180 degrees,
(5) drawing a cone shape using the current parameters of the

cursor,
(6) setting the cursor’s color to lightblue,
(7) setting the cursor’s X, Y and Z position to 0, 1.6, and -2.5

respectively,
(8) setting the cursor’s X, Y and Z scale to 0.5, 0.4, and 0.5

respectively, and
(9) drawing a sphere shape using the current parameters of the

cursor.

3.4 The MYR API
The development of the API was a primary focus of the MYR de-
velopment team. The choice to adopt the notion of a cursor helped
significantly. The entire MYR API only ever interacts with this cur-
sor, making it easy to understand. This single point of interaction
coupled with the expressiveness of an ECS provides MYR with an
API that is both beginner-friendly and expressive.

setColor('#A0522D'); // sienna
setPosition(0, 1, -2.5);
setScale(0.5, 1, 0.5);
setRotation(180, 0, 0);
cone();
setColor('lightblue');
setPosition(0, 1.6, -2.5);
setScale(0.5, 0.4, 0.5);
sphere();

Figure 1: MYR code and resulting image of an ice cream cone

The MYR API also handles some of the more difficult parts of
managing the components of each entity. Inmost cases, components
do not interfere with each other, because they are single-purpose,
but in certain situations access to the previously defined compo-
nents is necessary. The expression fadeIn(box()) takes the box
entity as its first parameter and then adds the fadeIn animation
component. The fadeIn animation component handles the shift
from an invisible entity to one that can be observed in the scene.
In this case, however, the cursor must also access the previously
defined material component and add the transparency property to
it. This forces the cursor to retain a copy of its previous work in
order to access the entities it has previously defined. While this
does break the typical notion of a cursor, it is an important change
necessary to support the ECS.

Ultimately, it is the control over the interaction with the cursor
that helps MYR offer a rich, unified API that is within reach of
beginners. It supports many geometric entities and simple anima-
tions to be explored, and when coupled with simple constructs, like
functions and loops, the user can quickly create building blocks for
more advanced entities in subsequent work.

3.5 Groups
In order to make MYR more engaging for advanced users, the team
developed groups, a powerful feature of the MYR API. Like normal
entities, group entities have scale, position, and rotation compo-
nents. However, in lieu of material and geometry components, they
have a component that is comprised of other entities. Groups give
the user the ability to create nested entities–black boxes, so to

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Berns et al.

speak, that can contain other entities or even other groups. Once
entities are placed inside of a black box, the user can manipulate the
black box as a whole without altering the appearance and relative
positioning of the entities contained.

Groups were originally implemented to provide an entity that
could be used to simultaneously manipulate multiple entities, e.g.
for animations. Subsequently, the team was working to model
molecular geometries in MYR, that is, to illustrate the position-
ing of atoms in molecules. Without the use of groups, the desired
models could still be achieved, but altering their scale and posi-
tion was tedious and and calculation-intensive. By using groups
to define the molecules, rescaling and repositioning became easy,
because not only did we only have to change the group’s scale and
position components, but we were also able to use whole numbers
for these values.

Convinced that groups could be used in more elaborate ways,
we began experimenting with the use of groups inside of functions
that returned the group itself. This made the groups dynamic and
reusable. By using groups in this way, as well as a simple loop,
a crystal structure of molecules can be modeled in MYR. This is
demonstrated in Figure 2.

This simple idea of grouping has had a profound effect on the
capabilities of MYR. We believe that this will make MYR more
enjoyable for anyone who wants to make more elaborate and robust
scenes.

4 APPLICATION FEATURES
Figure 3 shows the MYR environment in action. The environment
runs as a web application inside a modern web browser. The left
side is the code-editing area, and the right side is the renderer.

The top row contains the following buttons (from left to right):
• menu to load examples,
• “play” to render a scene,
• “stop” to stop the render of scene,
• “plus” to create a new scene,
• “save” to preserve the scene,
• “folders” to open up previous work and examples,
• “help” to bring up the MYR reference,
• “cog” which offers different view options, and
• login for logging in using a Google account.

In the lower-right corner of the image is the “goggles” button,
which converts the display to a full-screen virtual reality render.

4.1 IDE
TheMYR application, at its core, is a tool for writing code. Providing
a fully integrated development environment is critical to MYR’s
success. The IDE includes two key components: the editor and the
renderer. The editor supports some of the most common features
in modern text editors. This includes:

(1) common word processing features, such as keyboard short-
cuts, drag-and-drop text, and cut, copy, and paste function-
ality,

(2) development features such as live syntax checking, code
folding, comment toggling, and syntax highlighting, and

(3) a custom-built autocomplete engine to display the MYR API.

for (let i = 0; i < 21; i += 7) {
for (let j = 0; j < 21; j += 7) {

for (let k = 0; k < 21; k += 7) {
my_molecule({x: i, y: j, z: k});

}
}

}

Figure 2: By calling a function that takes a position as an
argument and returns a group within a nested for loop, one
can model a crystal structure of molecules in MYR.

MYR’s set of features is intended to get users working quickly
with tools, and also offer more development-oriented features as
well. Exposure helps introduce them to common IDE features and
helps them be more productive. Offering a rich feature set helps
ensure that the tools are continually able to support the users’ best
work as they become more proficient.

The IDE also includes a perspective representation of the scene.
On a desktop or laptop computer, the scene can be explored with a
keyboard and mouse. On a mobile device or virtual reality viewer,
the scene can be explored using the device’s orientation and screen
presses. The user also has the option to leave the editor behind and
jump straight into the virtual reality scene itself. Going from the
code to the viewer is seamless with just a click of a button.

As with any new tool, there is an initial learning curve. To help
ease the learning process, MYR’s IDE provides a color-coded refer-
ence for its entire API. Learning the API is also facilitated with the
autocomplete feature. These features give users an experience that
is intuitive and modern.

4.2 Real-time sync
One of the challenges of using virtual reality is the amount of time
spent compiling and transferring the scene for viewing. In many
cases, this can detract from the enjoyability of the experience.

In practical use, MYR developers edit their code on a desktop
or laptop computer, and open the same project on a viewer (e.g. a
mobile phone with Google Cardboard). Code changes on the de-
velopment computer are then immediately viewable on the virtual
reality device. The ability to go from code to scene supports an
iterative approach, allowing users to frequently test their code.

MYR also provides the ability to publish a scene to multiple
clients for viewing. When working in MYR, the user only needs
to save the scene to distribute it to all clients. This feature was

MYR: A Web-Based Platform for Teaching Coding Using VR SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

Figure 3: The MYR IDE features the code editor (left) and the resulting scene (right).

developed using Google’s Firebase, a serverless architecture service.
It provides an easy way for multiple clients to listen for changes in
a shared database with minimal effort by the development team.

4.3 Sharing
Learning from example is a staple in many learning environments.
The MYR team spent a significant amount of time providing il-
lustrative examples of scenes in MYR. All of these examples are
available through a gallery in the IDE. To encourage extension of
these examples, the user is able to quickly access, modify, and then
save them as their own. This allows the examples to be easily used
by an instructor to deliver starter code to students, who can then
extend it to meet a certain set of challenges in a curriculum.

The ability to share, however, goes far beyond just delivering
samples and starter code. Presently, every project is public and
can be shared easily via simple web link. Sharing one’s work with
others has the potential to keep authors engaged and give them
a sense of accomplishment. This approach is intended to build a
community of developers and allow them to share their work freely
with one another.

4.4 Snapshot capture
While MYR can support imaginative work, it can also be used to
conduct research. MYR uses the popular web library Redux for
its application state management. By accessing this store, MYR is
able to capture the entire state of the application and upload it via
HTTPS to its back-end in Firebase.

Snapshots capture the entire state of the application, including
the code the user wrote, which user wrote it, and the timestamp
at which it was written. The MYR team is then able to produce
a timeline from each render to the next. When processing this
timeline, certain meta properties arise independent of the code
itself.

Perhaps the most significant pieces of data that MYR generates
are the rate at which the render system produces errors and the
average amount of time between render attempts. These are aspects
of particular concern for our current research efforts. The code itself
is also useful for gaining insight into different problem solving
approaches and even into metrics such as color choice.

5 PILOT TESTING
In July 2018, we ran pilot tests with 13 middle school students
as part of a computing camp taught in an urban-rim city in the
Northeastern USA. We observed how the students interacted with
MYR and gathered feedback about the students’ overall experience.

We performed our pilot tests on students who had little, if any,
prior experience with either text-based programming or virtual
reality. We worked with each student for 20 minutes, presenting
them with three scenes and giving them different tasks for them to
attempt to complete by modifying the provided starter code. We
gave them minimal assistance when it came to task completion.

In the first scene, students were asked complete tasks involving
setting colors and using coordinates to place a block between two
existing ones. In the second scene, students were presented with

SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA Berns et al.

two blocks and challenged to add a third one by using a function.
In the third scene, students added a scoop of ice cream to the cone
example previously discussed.

5.1 Student performance
Some of the tasks were easily accomplished by students, while
others proved to be more challenging.

From the first scene, 11 of 13 students were able to find the
correct line number of the code that set the color of a box entity,
and 10 of 13 were able to create a third block (8 of them in the
correct position).

From the second scene, about function modification, only 5 of 13
succeeded. We realized that functions were a new concept to our
test group; none of the students used functions in the third scene
task, where such use would have been applicable.

From the third scene, 11 of the 13 were able to add the second
“scoop” of ice cream.

5.2 Student feedback
When students were asked what they liked about using a educa-
tional virtual reality tool, they stated that the visual aspect improves
the overall learning experience. They enjoyed seeing the output of
their code, the fascination of creating a new world, the simplicity
of using it on a smartphone, the creative control they got over what
was displayed in the scene, and simply “everything.”

The survey asked students if they were interested in exploring
MYR more, ten students responded “yes” and three students re-
sponded “maybe.” None of our students responded “no.” Regarding
programming approach, six students preferred text-based program-
ming, five students preferred block-based programming, and two
students did not have a preference.

On a scale from one to five, with five being the highest, students
were asked to rate how much virtual reality enhanced their experi-
ence. Three students rated it a five, seven students rated it a four,
and three students rated it a three.

5.3 Takeaways
The results of our preliminary trial were positive. We saw high en-
gagement among all participants. But what was even more surpris-
ing was that the enthusiasm persisted, even when they encountered
challenging situations. Perhaps our expectations for the students
were too high relative to their age group, but despite the difficulty
they had completing the assigned tasks, everyone was eager to
come back and give it another try.

6 FUTUREWORK
Based on the feedback we received during the pilot testing and from
conversations with CS educators, we are developing new features
that make using MYR in the classroom easier for early adopters.
The following section describes our plans for future work.

6.1 Integrated curricula
One of the biggest challenges the team faced when conducting
its pilot tests was delivering the instructions to the user. It was
difficult to give consistent guidance from one user to the next. A
script could not cover every scenario, and the instructions naturally

improved as we learned what works and what does not. The need
to provide a consistent interaction from user to user is critical
to conducting proper research. Therefore, we plan to develop an
integrated curriculum system in MYR, to complement its existing
examples library.

As an educational tool, having an integrated curriculum has been
demonstrated to be effective (e.g., Codecademy [3] and many other
guided programming systems).

The MYR team also recognizes the challenges of creating lesson
plans. We are planning a system for the development of different
curricula to be integrated into the coding environment itself.

It is further important to draw on the experience of other CS
educators. This is why we hope to make this feature available and
easy to use, for anyone willing to put together a curriculum using
MYR. The MYR team believes that a wide range of curricula is
not only beneficial to the user but also to understand how best to
teach MYR. With permission of the authors, MYR will provide this
curriculum for other instructors in the hope that they will offer a
variety of different lessons to suit many tastes.

7 CONCLUSIONS
MYR seeks to deliver the best experience for beginners who want to
explore programming and virtual reality. One of our primary goals
going forward is to deliver a scalable system that can be deployed
in classrooms and also enjoyed at home. We aim to make this tool
available to any CS educator, allowing them to supplement their
curriculum with an educational adventure into virtual reality.

Inspired by all of the previous work in educational computing,
MYR can encourage new programmers by seizing on the recent
excitement about virtual reality. MYR was developed specifically to
overcome obstacles in virtual reality programming. Features like
its real-time sync can be used to alleviate the hardware challenges
associated with virtual reality, and by targeting a wide range of
headsets, like the Google Cardboard, MYR helps make virtual reality
economical for school budgets.

In an effort to investigate the role virtual reality can have in
teaching CS, we developed a powerful tool that we hope is adopted
by educators. We believe that offering this immersive environment
can have a profound effect on overall attitudes towards learning
programming. Our initial research looks promising. Students re-
mained engaged and excited about the material. Our results are
encouraging as students persisted and maintained positive attitudes
despite challenges. Since virtual reality offers an effective platform
for immersive, educational experiences, we have the opportunity
to bring virtual reality to the classroom.

MYR can be accessed at learnmyr.org.

8 ACKNOWLEDGMENTS
We would like to thank Chike Abuah for his significant initial
contributions to the MYR project. We would like to thank Vrinda
Punj and Elena Izotova for their contributions to the MYR system.
We would like to thank Sasha Wilkinson, who reviewed our paper
draft. We would like to thank Akira Kamiya for supporting our
work with students in the summer camps. This material is based
upon work supported by the National Science Foundation under
Grant No. 1433592.

MYR: A Web-Based Platform for Teaching Coding Using VR SIGCSE’19, February 27–March 2, 2019, Minneapolis, MN, USA

REFERENCES
[1] [n. d.]. A-Frame – Make WebVR. https://aframe.io/
[2] [n. d.]. https://get.webgl.org. https://get.webgl.org/
[3] [n. d.]. Learn to Code - for Free | Codecademy. https://www.codecademy.com/
[4] [n. d.]. three.js - Javascript 3D library. https://threejs.org/
[5] [n. d.]. Unity. https://unity3d.com
[6] [n. d.]. WebVR - Bringing Virtual Reality to the Web. https://webvr.info/
[7] Karen Brennan. 2018. New frameworks for studying and assessing the develop-

ment of computational thinking. (08 2018).
[8] Jorge Ferreira Franco and Roseli de Deus Lopes. 2009. Three-dimensional Digital

Enviroments and Computer Graphics Influencing K-12 Individuals’ Digital Liter-
acy Development and Interdisciplinary Lifelong Learning. In ACM SIGGRAPH
ASIA 2009 Educators Program (SIGGRAPH ASIA ’09). ACM, New York, NY, USA,
Article 15, 8 pages. https://doi.org/10.1145/1666611.1666626

[9] Soomin Kim, Wookjae Maeng, Cindy Oh, Joonmin Lee, Seo-young Lee, Jeewon
Choi, Gil Whan Hwang, Guhyun Hwang, Hyunsung Kim, Joonseok Kim, and
Joonhwan Lee. 2017. Immersive VR for Numerical Engagement. In Proceedings of
the 23rd ACM Symposium on Virtual Reality Software and Technology (VRST ’17).
ACM, New York, NY, USA, Article 64, 2 pages. https://doi.org/10.1145/3139131.
3141207

[10] Colleen M. Lewis. 2010. How Programming Environment Shapes Perception,
Learning and Goals: Logo vs. Scratch. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE ’10). ACM, New York, NY,
USA, 346–350. https://doi.org/10.1145/1734263.1734383

[11] Linda Mannila, Mia Peltomäki, and Tapio Salakoski. 2006. What about a simple
language? Analyzing the difficulties in learning to program. Computer Science
Education 16, 3 (2006), 211–227. https://doi.org/10.1080/08993400600912384
arXiv:https://doi.org/10.1080/08993400600912384

[12] Tanya Markow, Eugene Ressler, and Jean Blair. 2006. Catch That Speeding
Turtle: Latching Onto Fun Graphics in CS1. Ada Lett. XXVI, 3 (Nov. 2006), 29–34.
https://doi.org/10.1145/1185875.1185648

[13] Seymour Papert. 1972. On Making a Theorem for a Child. In Proceedings of
the ACM Annual Conference - Volume 1 (ACM ’72). ACM, New York, NY, USA,
345–349. https://doi.org/10.1145/800193.569942

[14] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

https://aframe.io/
https://get.webgl.org/
https://www.codecademy.com/
https://threejs.org/
https://unity3d.com
https://webvr.info/
https://doi.org/10.1145/1666611.1666626
https://doi.org/10.1145/3139131.3141207
https://doi.org/10.1145/3139131.3141207
https://doi.org/10.1145/1734263.1734383
https://doi.org/10.1080/08993400600912384
http://arxiv.org/abs/https://doi.org/10.1080/08993400600912384
https://doi.org/10.1145/1185875.1185648
https://doi.org/10.1145/800193.569942

	Abstract
	1 Introduction
	2 Background
	3 Overview of MYR
	3.1 Entity-component-system
	3.2 Cursor
	3.3 An Example
	3.4 The MYR API
	3.5 Groups

	4 Application Features
	4.1 IDE
	4.2 Real-time sync
	4.3 Sharing
	4.4 Snapshot capture

	5 Pilot Testing
	5.1 Student performance
	5.2 Student feedback
	5.3 Takeaways

	6 Future Work
	6.1 Integrated curricula

	7 Conclusions
	8 Acknowledgments
	References

